Системы энергообеспечения мышечной деятельности. Анаэробные и аэробные механизмы энергообеспечения. К ним относятся

Снабжение сокращающихся мышц энергией происходит при химических превращениях, идущих без участия кислорода, - анаэробный гликолиз - и при участии его - окислительное (аэробное) фосфорилирование. Кислород требуется не только для аэробного фосфорилировання, но и для частичного окисления молочной кислоты (лактат) - конечного продукта анаэробного расщепления гликогена.

Наибольшее значение имеет окислительное фосфорилирование, так как оно позволяет более эффективно использовать энергию химических превращений в мышцах и тканях. Анаэробные процессы энергообразования включаются при недостатке кислорода как вспомогательный механизм. Таким образом, функция кислородного обмена заключается в образовании энергии, необходимой для различного рода физиологических процессов, в том числе в сократительной деятельности мышц.

Основные химические реакции энергетических процессов происходят в особой части клеток (митохондриях), куда поступает кислород. В митохондриях клеток образуется аденозинтрифосфорная кислота (АТФ), являющаяся универсальной формой накопления энергии в ее фосфорных связях. Трансформация химических реакций с участием АТФ в механическую работу осуществляется сократительным белковым материалом мышц - актином и миозином. Сложная белковая структура актомиозин под влиянием АТФ способна сокращаться, а последняя при этом распадается до АДФ и АМФ (аденозин-дифосфорная и аденозинмонофосфорная кислоты). Запасы АТФ в мышечной ткани ограничены, поэтому для выполнения значительной мышечной работы требуется постоянное восполнение запасов этого соединения.

Восстановление (ресинтез) АТФ происходит как за счет макроэргических соединений, содержащихся в мышце (креатинфосфат), так и за счет макроэргических соединений, образующихся в ней в процессе мышечной деятельности.

Креатинфосфат имеет большое значение в процессах мышечного сокращения, играя роль энергетического депо. При этом его депо пирующая способность энергии выше, чем у АТФ. Однако креатинфосфат не реагирует с сократительным веществом мышц (актомиози- ном), а вступает в реакцию лишь с АДФ.

Креатинкиназная реакция протекает чрезвычайно быстро, и она характерна для кратковременных интенсивных физических нагрузок

Ресинтез АТФ за счет макроэргических фосфорных соединений, образующихся в процессе мышечной деятельности, может осуществ ляться путем гликолитического и дыхательного фосфорилировання

Гликолитическое фосфорилирование, подобно креатинкиназной реакции, - анаэробный путь ресинтеза АТФ. В связи с тем, что углеводные запасы организма, особенно у верховых лошадей, достаточно велики, гликолиз может обеспечивать ресинтез АТФ длительное время.

Ресинтез АТФ гликолитическим фосфорилированием является преобладающим при мышечных нагрузках максимальной интенсивности, когда появляется резкое несоответствие между сильно возросшей потребностью организма в кислороде и ограниченными возможностями ее удовлетворения. Конечный продукт анаэробного распада углеводов - молочная кислота.

При максимальной активности мышц образуется избыток молочной кислоты, диффундирующей в кровь. После максимальной работы, например после быстрой скачки или бега, наблюдаются учащенное дыхание и усиленное по сравнению с состоянием покоя потребление кислорода. Повышенное количество кислорода, потребляемое в восстановительном периоде, называется кислородным долгом и расходуется на окисление в тканях печени и сердца некоторой части избытка молочной кислоты (до 1 / 4), образовавшегося в период максимальной мышечной активности. Остальная часть избытка молочной кислоты, накопившаяся в крови при быстром беге, снова превращается в печени в гликоген.

Важную роль в мышечной энергетике играют процессы окисления пировиноградной кислоты, являющейся предшественником молочной кислоты при анаэробном фосфорилировании. Большая часть пиро-виноградной кислоты является основой для аэробного расщепления углеводов и других окислительных реакций.

Обязательное условие аэробного окисления - хорошее снабжение организма кислородом. Такой путь ресинтеза АТФ характерен для нагрузок средней и умеренной интенсивности, когда потребность организма в кислороде может полностью удовлетворяться.

Большая часть аэробных окислительных превращений идет на обеспечение двигательной деятельности. При мышечной работе уровень потребления организмом кислорода возрастает во много раз. Скелетные мышцы при напряженной работе могут увеличивать потребление кислорода в 100 раз. Следовательно, доставка необходимого количества кислорода для обменных процессов в мышцах является решающим условием, обеспечивающим двигательную деятельность организма лошади.

В процессе энергетического обмена происходит потребление организмом кислорода и выделение углекислоты. Важное значение имеет соотношение выделенная углекислота: потребляемый кислород - так называемый дыхательный коэффициент, определенным образом отражающий характер обмена веществ. Дыхательный коэффициент имеет сложную динамику и во время работы претерпевает изменения. У лошадей при движении шагом он колеблется в пределах единицы, а при более интенсивном движении уменьшается вследствие истощения углеводов и постепенного вовлечения в обмен белков и жиров. Таким образом, дыхательный коэффициент указывает, какое энергетическое вещество окисляется. При окислении углеводов он равен единице, при окислении белков - 0,8, жиров - 0,7.

По количеству потребленного кислорода при определенном дыхательном коэффициенте можно рассчитать затраты калорий, необходимых для обеспечения той или иной работы.

Минимальный уровень обмена веществ при полном мышечном покое называется основным обменом. У лошадей основной обмен неодинаков и зависит от возраста, массы, породы и других факторов. Зная данные основного обмена и затраты при движении, можно определить общее количество энергии, расходуемой лошадью на разных аллюрах при прохождении той или иной дистанции (табл. 1).

Таблица 1. Расход энергии у верховых лошадей в килокалориях при работе под седлом при массе всадника 80 кг * (по Г. Г. Карлсену)

* (С учетом кислородного долга; в 1 ккал содержится 4,18 кДж. )

Затраты энергии при движении шагом у лошадей составляют 0,58-0,71 ккал на 1 кг/км. При переходе на движение рысью повышается расход энергии в единицу времени примерно в 2 раза, то есть пропорционально увеличению скорости движения. В то же время при расчете на единицу пути эти изменения незначительны.

Следует отметить, что величина потребления кислорода характеризует уровень окислительно-восстановительных процессов в организме, а мерой участия процессов анаэробного образования энергии при мышечной деятельности является кислородный долг. Сумма этих величин, то есть потребления кислорода во время работы и кислородного долга, составляет уровень кислородного запроса и является показателем энергозатрат организма

Общая характеристика аэробной системы энергообеспечения

Аэробная система энергообеспечения значительно уступает алактатной и лактатной по мощности энергопродукции, скорости включения в обеспечение мышечной деятельности, однако многократно превосходит по ёмкости и экономичности (табл. 1).

Таблица № 1. Энергообеспечение мышечной работы

Источники Пути Образования Время активации до максимального уровня Срок действия Продолжительность максимального выделения энергии
Алактатные анаэробные АТФ, креатинфосфат 0 До 30 с До 10 с
Лактатные анаэробные Гликолиз с образованием лактата 15 – 20 с От 15 – 20 с до 6 – 6 мин От 30 с до 1 мин 30 с
Аэробные Окисление углеводов и жиров кислородом воздуха 90 – 180 с До нескольких часов 2 – 5 мин и более

Особенностью аэробной системы является то, что образование АТФ в клеточных органелах-митохондриях, находящихся в мышечной ткани происходит при участии кислорода, доставляемого кислородтранспортной системой. Это предопределяет высокую экономичность аэробной системы, а достаточно большие запасы гликогена в мышечной ткани и печени, а также практически неограниченные запасы липидов – её ёмкость.

В наиболее упрощённом виде деятельность аэробной системы энергообеспечения осуществляется следующим образом. На первом этапе в результате сложных процессов происходит преобразование как гликогена, так и свободных жирных кислот (СЖК) в ацетил-кофермент А (ацетил-КоА) – активную форму уксусной кислоты, что обеспечивает протекание всех последующих процессов энергообразования по единой схеме. Однако до момента образования ацетил-КоА окисление гликогена и СЖК происходит самостоятельно.

Все многочисленные химические реакции, происходящие в процессе аэробного ресинтеза АТФ, можно разделить на три типа: 1 – аэробный гликолиз; 2 – цикл Кребса, 3 - система транспорта электронов (рис. 7).

Рис. 7. Этапы реакций ресинтеза АТФ в аэробном процессе

Первым этапом реакций является аэробный гликолиз, в результате которого осуществляется расщепление гликогена с образованием СО2 и Н2О. Протекание аэробного гликолиза происходит по той же схеме, что и протекание рассмотренного выше анаэробного гликолиза. В обоих случаях в результате химических реакций гликоген преобразуется в глюкозу, а глюкоза – в пировиноградную кислоту с ресинтезом АТФ. В этих реакциях кислород не участвует. Присутствие кислорода обнаруживается в дальнейшем, когда при его участии пировиноградная кислота не преобразуется в молочную кислоту в молочную кислоту, а затем в лактат, что имеет место в процессе анаэробного гликолиза, а направляется в аэробную систему, конечными продуктами которой оказывается углекислый газ (СО2), выводимый из организма лёгкими, и вода (рис. 8)


Рис. 8. Схематическое протекание анаэробного и аэробного гликолиза

Расщепление 1 моля гликогена на 2 моля пировиноградной кислоты происходит с выделением энергии, достаточной для ресинтеза 3 молей АТФ: Энергия + 3АДФ + Фн → 3АТФ

Из образовавшейся в результате расщепления гликогена пировиноградной кислоты сразу выводится СО2, превращая её из трёхуглеродного соединения в двухуглеродное, которое сочетаясь с коферментом А, образует ацетил- КоА, который включается во второй этап аэробного образования АТФ – цикл лимонной кислоты или цикл Кребса.

В цикле Кребса протекает серия сложных химических реакций, в результате которых происходит окисление пировиноградной кислоты – выведение ионов водорода (Н+) и электронов (е-), которые в итоге попадают в систему транспорта кислорода и участвуют в реакциях ресинтеза АТФ на третьем этапе, образуя СО2, который диффундируется в кровь и переносится в лёгкие, из которых и выводится из организма. В самом цикле Кребса образуется только 2 моля АТФ (рис. 9).


Рис. 9. Схематическое изображение окисления углеродов в цикле Кребса

Третий этап протекает в цепи транспорта электронов (дыхательной цепи). Реакции, происходящие с участием коферментов, в общем виде сводятся к следующему. Ионы водорода и электроны, выделяемые в результате реакций, протекавших в цикле Кребса и в меньшей мере в процессе гликолиза, транспортируются к кислороду, чтобы в результате образовать воду. Одновременно выделяемая энергия в серии сопряжённых реакций используется для ресинтеза АТФ. Весь процесс, происходящий по цепи передачи электронов кислороду называется окислительным фосфорилированием. В процессах, происходящих в дыхательной цепи, потребляется около 90 % поступающего к клеткам кислорода и образуется наибольшее количество АТФ. В общей сложности окислительная система транспорта электронов обеспечивает образование 34 молекул АТФ из одной молекулы гликогена.

Усвоение и абсорбция углеводов в кровоток происходит в тонком кишечнике. В печени они превращаются в глюкозу, которая в свою очередь может быть превращена в гликоген и депонируется в мышцах и печени, а также используется различными органами и тканями в качестве источника энергии для поддержания деятельности. В организме здорового с достаточным уровнем физической подготовленности мужчины с массой тела 75 кг содержится 500 – 550 г углеводов в виде гликогена мышц (около 80 %), гликогена печени (примерно 16 – 17 %), глюкозы крови (3 – 4 %), что соответствует энергетическим запасам порядка 2000 – 2200 ккал.

Гликоген печени (90 – 100 г) используется для поддержания уровня глюкозы крови, необходимого для обеспечения нормальной жизнедеятельности различных тканей и органов. При продолжительной работе аэробного характера, приводящей к истощению запасов мышечного гликогена, часть гликогена печении может использоваться мышцами.

Следует учитывать, что гликогенные запасы мышц и печени могут существенно увеличиваться под влиянием тренировки и пищевых манипуляций, предусматривающих углеводное истощение и последующее углеводное насыщение. Под влиянием тренировки и специального питания концентрация гликогена в печени может увеличиться в 2 раза. Увеличение количества гликогена повышает его доступность и скорость утилизации при выполнении последующей мышечной работы.

При продолжительных физических нагрузках средней интенсивности образование глюкозы в печени возрастает в 2 – 3 раза по сравнению с образованием её в состоянии покоя. Напряжённая продолжительная работа может привести к 7 – 10-кратному увеличению образования глюкозы в печени по сравнению с данными, полученными в состоянии покоя.

Эффективность процесса энергообеспечения за счёт жировых запасов определяется скоростью протекания липолиза и скоростью кровотока в адипозной ткани, что обеспечивает интенсивную доставку свободных жирных кислот (СЖК) к мышечным клеткам. Если работа выполняется с интенсивностью 50 – 60 % VO2 max, отмечается максимальный кровоток в адипозной ткани, что способствует максимальному поступлению в кровь СЖК. Более интенсивная мышечная работа связана с интенсификацией мышечного кровотока при одновременном уменьшении кровоснабжения адипозной ткани и, следовательно, с ухудшением доставки СЖК в мышечную ткань.

Хотя в процессе мышечной деятельности липолиз разворачивается, однако уже на 30 – 40-й минутах работы средней интенсивности её энергообеспечения в равной мере осуществляется за счёт окисления как углеводов, так и липидов. Дальнейшее продолжение работы, приводящее к постепенному исчерпанию ограниченных углеводных ресурсов, связано с увеличением окисления СЖК; например, энергообеспечение второй половины марафонской дистанции в беге или шоссейных велогонках (более 100 км) преимущественно связано с использованием жиров.

Несмотря на то что использование энергии от окисления липидов имеет реальное значение для обеспечения выносливости только при продолжительной мышечной деятельности, начиная уже с первых минут работы с интенсивностью, превышающей 60 % VO2max, отмечается освобождение из триацилглицеридов СЖК, их поступление и окисление в сокращающихся мышцах. Через 30 – 40 мин после начала работы скорость потребления СЖК возрастает в 3 раза, а после 3 – 4 часов работы – в 5 – 6 раз.

Внутримышечная утилизация триглицеридов существенно возрастает под влиянием тренировки аэробной направленности. Эта адаптационная реакция проявляется как в быстроте развёртывания процесса образования энергии за счёт окисления СЖК, поступивших из трицеридов мышц, так и в возрастании их утилизации из мышечной ткани.

Не менее важным адаптационным эффектом тренированной мышечной ткани является повышение её способности к утилизации жировых запасов. Так, после 12-недельной тренировки аэробной направленности способность к утилизации триглицеридов в работающих мышцах резко возрастала и достигала 40 %.

Роль белков для ресинтеза АТФ не существенна. Однако углеродный каркас многих аминокислот может быть использован в качестве энергетического топлива в процессе окислительного метаболизма, что проявляется при продолжительных нагрузках средней интенсивности, при которых вклад белкового метаболизма в энергопродукцию может достичь 5 – 6 % общей потребности в энергии.

Благодаря значительным запасам глюкозы и жиров в организме и неограниченной возможности потребления кислорода их атмосферного воздуха, аэробные процессы, обладая меньшей мощностью по сравнению с анаэробными, могут обеспечивать выполнение работы в течении длительного времени (т. е. их ёмкость очень велика при очень высокой экономичности). Исследования показывают, что, например в марафонском беге за счёт использования мышечного гликогена работа мышц продолжается в течении 80 мин. Определённое количество энергии может быть мобилизовано за счёт гликогена печени. В сумме это может обеспечить 75 % времени, необходимого для преодоления марафонской дистанции. Остальная энергия образуется в результате окисления жирных кислот. Однако скорость их диффузии из крови в мышцы ограничена, что лимитирует производство энергии за счёт этих кислот. Энергии, продуцируемой вследствие окисления СЖК, достаточно для поддержания интенсивности работы мышц на уровне 40 – 50 % VO2max, ВТО времы как сильнейшие марафонцы способны преодолевать дистанцию с интенсивностью, превышающей 80 – 90 % VO2max, что свидетельствует о высоком уровне адаптации аэробной системы энергообеспечения, позволяющем не только обеспечить оптимальное сочетание использования углеводов, жиров, отдельных аминокислот и метаболитов для производства энергии, но и экономное расходование гликогена.

Таким образом, вся совокупность реакций, обеспечивающих аэробное окисление гликогена, выглядит следующим образом. На первом этапе в результате аэробного гликолиза образуется пировиноградная кислота и ресинтезируется некоторое количество АТФ. На втором, в цикле Кребса, производится СО2, а ионы водорода (Н+) и электроны (е-) вводятся в систему транспорта электронов также с ресинтезом некоторого количества АТФ. И наконец, заключительный этап связан с образованием Н2О из Н+, е- и кислорода с высвобождением энергии, используемой для ресинтеза подавляющего количества АТФ. Жиры и белки, используемые в топлива для ресинтеза АТФ, также проходят через цикл Кребса и систему транспорта электронов (рис. 10).


Рис. 10. Схематическое изображение функционирования аэробной системы энергообеспечения

Лактатная система энергообеспечения.

В лактатной системе энергообеспечения ресинтез АТФ происходит за счёт расщепления глюкозы и гликогена при отсутствии кислорода. Этот процесс принято обозначать как анаэробный гликолиз. Анаэробный гликолиз является значительно более сложным химическим процессом по сравнению с механизмами расщепления фосфогенов в алактатной системе энергообеспечения. Он предусматривает протекание серии сложных последовательных реакций, в результате которых глюкоза и гликоген расщепляются до молочной кислоты, которая в серии сопряжённых реакций используется для ресинтеза АТФ (рис. 2).


Рис. 2. Схематическое изображение процесса анаэробного гликолиза

В результате расщепления 1 моля глюкозы образуется 2 моля АТФ, а при расщеплении 1 моля гликогена – 3 моля АТФ. Одновременно с высвобождением энергии в мышцах и жидкостях организма происходит образование пировиноградной кислоты, которая затем преобразуется в молочную кислоту. Молочная кислота быстро разлагается с образованием её соли – лактата.

Накопление молочной кислоты в результате интенсивной деятельности гликолитического механизма приводит к большому образованию лактата и ионов водорода (Н+) в мышцах. В результате, несмотря на действие буферных систем, постепенно снижается мышечный pH с 7,1 до 6,9 и даже до 6,5 – 6,4. Внутриклеточный pH, начиная с уровня 6,9 – 6,8 замедляет интенсивность гликолитической реакции восстановления запасов АТФ, а при pH 6,5 – 6,4 расщепление гликогена прекращается. Таким образом, именно повышение концентрации молочной кислоты в мышцах ограничивает расщепление гликогена в анаэробном гликолизе.

В отличие от алактатной системы энергообеспечения, мощность которой достигает максимальных показателей уже на первой секунде работы, процесс активизации гликолиза разворачивается значительно медленнее и достигает высоких величин энергопродукции только на 5 – 10 секундах работы. Мощность гликолитического процесса значительно уступает мощности креатинфосфокиназного механизма, однако является в несколко раз более высокой по сравнению с возможностями системы аэробного окисления. В частности, если уровень энергопродукции АТФ за счёт распада КФ составляет 9 – 10 ммоль/кг с.м.т./с (сырая масса ткани), то при подключении гликолиза объём производимой АТФ может увеличиться до 14 ммоль/кг с.м.т./с. За счёт использования обоих источников ресинтеза АТФ в течении 3-минутной интенсивной работы мышечная система человека способна вырабатывать около 370 ммоль/кг с.м.т. При этом на долю гликолиза приходится не менее 80 % общей продукции. Максимальная мощность лактатной анаэробной системы проявляется на 20 – 25-й секундах работы, а на 30 – 60-й секундах гликолитический путь ресинтеза АТФ является основным в энергообеспечении работы.

Ёмкость лактатной анаэробной системы обеспечивает её превалирующее участие в энергопродукции при выполнении работы продолжительность до 30 – 90 с. При более продолжительной работе роль гликолиза постепенно снижается, однако остаётся существенной и при более продолжительной работе – до 5 – 6 мин. Общее количество энергии, которое образуется за счёт гликолиза, наглядно может быть оценено и по показателям лактата крови после выполнения работы, требующей предельной мобилизации лактатной системы энергообеспечения. У нетренированных людей предельная концентрация лактата в крови составляет 11 – 12 ммоль/л. Под влиянием тренировки ёмкость лактатной системы резко возрастает и концентрация лактата в крови может достигать 25 – 30 ммоль/л и выше.

Максимальные величины энергообразования и лактата в крови у женщин на 30 – 40 % ниже по сравнению с мужчинами такой же спортивной специализации. Юные спортсмены по сравнению со взрослыми отличаются невысокими анаэробными возможностями. максимальная концентрация лактата в крови при предельных нагрузках анаэробного характера у них не превышает 10 ммоль/кг, что в 2 – 3 раза ниже, чем у взрослых спортсменов.

Таким образом, адаптационные реакции лактатной анаэробной системы могут протекать в различных направлениях. Одним из них является увеличение подвижности гликолитического процесса, что проявляется в значительно более быстром достижении его максимальной производительности (с 15 – 20 до 5 – 8 с). Вторая реакция связана с повышением мощности анаэробной гликолитической системы, что позволяет ей продуцировать значительно большее количество энергии в единицу времени. Третья реакция сводится к повышению ёмкости системы и, естественно общего объёма продуцируемой энергии, вследствие чего увеличивается продолжительность работы, преимущественно обеспечиваемая за счёт гликолиза.

Максимальное значение лактата и pH в артериальной крови в процессе соревнований по некоторым видам спорта представлены на рис. 3.


Рис.3. Максимальные значения лактата и pH в артериальной крови у спортсменов, специализирующихся в различных видах спорта: а – бег (400, 800 м); б – скоростной бег на коньках (500, 1000м); в – гребля (2000 м); г – плавание 100 м; д – бобслей; е – велогонки (100 км)
(Eindemann, Keul, 1977)

Они дают достаточно полное представление о роли лактатных анаэробных источников энергии для достижения высоких спортивных результатов разных видах спорта и об адаптационных резервах системы анаэробного гликолиза.

При выборе оптимальной продолжительности работы, обеспечивающей максимальную концентрацию лактата в мышцах, следует учитывать, что максимальное содержание лактата отмечается при использовании предельных нагрузок, продолжительность которых колеблется в пределах 1 – 6 мин. Увеличение продолжительности работы связано с уменьшением концентрации лактата в мышцах.

Для выбора оптимальной методики повышения анаэробных возможностей важно проследить особенности накопления лактата при прерывистой работе максимальной интенсивности. Например, одноминутные предельные нагрузки с четырёхминутными паузами приводят к постоянному увеличению лактата в крови (рис. 4) при одновременном снижениипоказателей кислотно-основного состояния (рис. 5).


Рис. 4. Изменение концентрации лактата в крови в процессе прерывистой максимальной нагрузки (одноминутные упражнения с интенсивностью 95 %, разделённые периодами отдыха длительностью 4 мин) (Hermansen, Stenswold, 1972)

Рис. 5. Изменение pH крови при прерывистом выполнении одноминутных нагрузок максимальной интенсивности (Hollman, Hettinger, 1980)

Аналогичный эффект отмечается и при выполнении 15 – 20-секундных упражнений максимальной мощности с паузами около 3 минут (рис. 6).


Рис. 6. Динамика биохимических изменений у спортсменов при повторном выполнении кратковременных упражнений максимальной мощности (Н. Волков и др., 2000)

Алактатная система энергообеспечения.

Эта система энергообеспечения является наименее сложной, отличается высокой мощностью освобождения энергии и кратковременностью действия. Образование энергии в этой системе происходит за счёт расщепления богатых энергией фосфатных соединений – аденозинтрифосфата (АТФ) и креатинфосфата (КФ). Энергия, образующаяся в результате распада АТФ, в полной мере включается в процесс энергообеспечения работы уже на первой секунде. Однако уже на второй секунде выполнение работы осуществляется за счёт креатинфосфата (КФ), депонированного в мышечных волокнах и содержащего богатые энергией фосфатные соединения. Расщепление этих соединений приводит к интенсивному высвобождению энергии. Конечными продуктами расщепления КФ являются креатин (Кр) и неорганический фосфат (Фн). Реакция стимулируется ферментом креатинкиназа и схематически выглядит следующим образом:


Энергия, высвобождаемая при распаде КФ, является доступной для процесса ресинтеза АТФ, поэтому за быстрым расщеплением АТФ в процессе мышечного сокращения незамедлительно следует его ресинтез из АДФ и Фн с привлечением энергии, высвобождаемой при расщеплении КФ:


Ещё одним механизмом алактатной системы энергообеспечения является так называемая миокиназная реакция, которая активизируется при значительном мышечном утомлении, когда скорость расщепления АТФ существенно превышает скорость её ресинтеза. Миокиназная реакция стимулируется ферментом миокиназа и заключается в переносе фосфатной группы с одной молекулы на другую и образованием АТФ и аденозинмонофосфата (АМФ):


Аденозинмонофосфат (АМФ), являющийся побочным продуктом миокиназной реакции, содержит последнюю фосфатную группу и в отличие от АТФ и АДФ не может быть использован в качестве источника энергии. Миокиназная реакция активизируется в условиях, когда в силу утомления другие пути ресинтеза АТФ исчерпали свои возможности.

Запасы КФ не могут быть восполнены в процессе выполнения работы. Для его ресинтеза может быть использована только энергия, высвобождаемая в результате распада АТФ, что оказывается возможным лишь в восстановительном периоде после окончания работы.

Алактатная система, отличаясь очень высокой скорость освобождения энергии, одновременно характеризуется крайне ограниченной ёмкостью. Уровень максимальной алактатной анаэробной мощности зависит от количества фосфатов (АТФ и КФ) в мышцах и скорости их использования. Под влиянием тренировки спринтерского характера показатели алактатной анаэробной мощности могут быть значительно повышены. Под влиянием специальной тренировки мощность алактатной анаэробной системы может быть увеличена на 40 -80 %. Например, спринтерская тренировка в течении 8 недель бегунов привела к увеличению содержания АТФ и КФ в скелетной мышце в состоянии покоя примерно на 10 %.

Под влиянием тренировки в мышцах не только увеличивается количество АТФ и Кф, но и существенно возрастает способность мышечной ткани к их расщеплению. Ещё одной адаптационной реакцией, определяющей мощность алактатной анаэробной системы, является ускорение ресинтеза фосфатов за счёт повышения активности ферментов, в частности креатинфосфокиназы и миокиназы.

Под влиянием тренировки существенно возрастают и показатели максимальной ёмкости алактатной анаэробной стстемы энергообеспечения. Ёмкость алактатной анаэробной системы под влиянием целенаправленной многолетней тренировки иожет возрастать в 2,5 раза. Это подтверждается показателями максимального алактатного О2-долга: у начинающих спортсменов он составляет 21,5 мл/кг, у спортсменов высокого класса может достигать 54,5 мл/кг.

Увеличение ёмкости алактатной энергетической системы проявляется и в продолжительности работы максимальной интенсивности. Так, у лиц не занимающихся спортом, максимальная мощность алактатного анаэробного процесса, достигнутая через 0,5 – 0,7 с после начала работы, может удерживаться не более 7 – 10 с, то у спортсменов высшего класса, специализирующихся в спринтерских дисциплинах, она может проявляться в течение 15 – 20 с. При этом большая продолжительность работы сопровождается и значительно большей её мощностью, что обусловливается высокой скоростью распада и ресинтеза высокоэнергетических фосфатов.

Концентрация АТФ и КФ у мужчин и женщин практически одинакова – около 4 ммоль/кг АТФ и 16 ммоль/кг КФ. Однако общее количество фосфогенов, которые могут использоваться при мышечной деятельности, у мужчин значительно больше, чем у женщин, что обусловлено большими различиями в общем объёме скелетной мускулатуры. Естественно, что у мужчин значительно больше ёмкость алактатной анаэробной системы энергообеспечения.

В заключении следует отметить, что лица с высоким уровнем алактатной анаэробной производительности, как правило, имеют низкие аэробные возможности, выносливость к длительной работе. Одновременно у бегунов на длинные дистанции алактатные анаэробные возможности не только не сравнимы с возможностями спринтеров, но и часто уступают показателям, регистрируемым у лиц, не занимающихся спортом.

Общая характеристика систем энергообеспечения мышечной деятельности

Энергия, как известно, представляет собой общую количественную меру, связывающую воедино все явления природы, разные формы движения материи. Из всех видов энергии, образующейся и использующейся в различных физических процессах(тепловая, механическая, химическая и др.)применительно к мышечной деятельности, основное внимание должно быть сконцентрировано на химической энергии организма, источником которой являются пищевые продукты и её преобразовании в механическую энергию двигательной деятельности человека.

Энергия, высвобождаемая во время расщепления пищевых продуктов, используется для производства аденозинтрифосфата (АТФ), который депонируется в мышечных клетках и является своеобразным топливом для производства механической энергии мышечного сокращения.

Энергию для мышечного сокращения даёт расщепление аденозинтрифосфата (АТФ) до аденозиндифосфата (АДФ) и неорганического фосфата (Ф). Количество АТФ в мышцах невелико и его достаточно для обеспечения высокоинтенсивной работы лишь в течении 1 – 2 с. Для продолжения работы необходим ресинтез АТФ, который производится за счёт энергоотдающих реакций трёх типов. Восполнение запасов АТФ в мышцах позволяет поддерживать постоянный уровень его концентрации, необходимый для полноценного мышечного сокращения.

Ресинтез АТФ обеспечивается как в анаэробных, так и в аэробных реакциях с привлечением в качестве энергетических источников запасов креатинфосфата (КФ) и АДФ, содержащихся в мышечных тканях, а также богатых энергией субстратов (гликоген мышц и печени, запасы липозной ткани и др.). Химические реакции, приводящие к обеспечению мышц энергией протекают в трёх энергетических системах: 1) анаэробной алактатной, 2) анаэробной лактатной (гликолитической), 3) аэробной.

Образование энергии в первых двух системах осуществляется в процессе химических реакций, не требующих наличия кислорода. Третья система предусматривает энергообеспечение мышечной деятельности в результате реакций окисления, протекающих с участием кислорода. Наиболее общие представления о последовательности включения и количественных соотношениях в энергообеспечении мышечной деятельности каждой из указанных систем приведены на рис. 1.

Возможности каждой из указанных энергетических систем определяются мощностью, т. е. скоростью освобождения энергии в метаболических процессах, и ёмкостью, которая определяется величиной и эффективностью использования субстратных фондов.


Рис. 1. Последовательность и количественные соотношения процессов энергообеспечения мышечной деятельности у квалифицированных спортсменов в различных энергетических системах (схема): 1 – алактатной; 2 – лактатной; 3 – аэробной

Работающим мышцам необходима энергия. Следовательно, любая физическая нагрузка требует поставки энергии. В нашем организме существуют разные системы энергообеспечения, каждая из которых имеет свои особенности. Составление оптимальной тренировочной программы возможно только при хорошем знании принципов энергообеспечения.

Если прислушаться к своему организму, то можно достаточно точно установить, какая именно из систем в данный момент задействована для снабжения работающих мышц энергией. Однако, на практике, многие спортсмены не прислушиваются к сигналам своего организма, в соответствии с которыми они могли бы вносить изменения в свою тренировочную программу. Многие спортсмены тренируются слишком интенсивно или слишком однообразно, некоторые тренируются с чрезмерно низкой интенсивностью. Как бы то ни было, ни те, ни другие, никогда не смогут достичь желаемых результатов. Установить оптимальную тренировочную интенсивность можно двумя способами: при помощи замеров уровня лактата (молочной кислоты) в крови или при помощи регистрации частоты сердечных сокращений (ЧСС). Используя оба или один из этих методов, спортсмены часто добиваются более высоких результатов даже при меньшем объеме и интенсивности тренировок.

Энергетические системы

В организме человека существует такое высокоэнергетическое химическое вещество как аденозинтрифосфат (АТФ), которое является универсальным источником энергии. Во время мышечной деятельности АТФ распадается до аденозинфосфата (АДФ). В ходе этой реакции высвобождается энергия, которая непосредственно используется мышцами для энергии.

АТФ -> АДФ + энергия

организме поддерживается относительное постоянство этого вещества, что позволяет мышцам работать без остановки.

Выделяют три основных системы ресинтеза АТФ: фосфатную, лактат-ную и кислородную.

Фосфатная система

Фосфатный механизм ресинтеза АТФ включает использование имеющихся запасов АТФ в мышцах и быстрый ее ресинтез за счет высокоэнергетического вещества креатинфосфата (КрФ), запасы которого в мышцах ограничиваются 6-8 с интенсивной работы. Реакция ресинтеза АТФ с участием КрФ выглядит следующим образом:

КрФ + АДФ → АТФ + креатин

Фосфатная система отличается очень быстрым ресинтезом АТФ из АДФ, однако она эффективна только в течение очень короткого времени. При максимальной нагрузке фосфатная система истощается в течение 10 с. Вначале в течение 2 с расходуется АТФ, а затем в течение 6-8 с - КрФ. Такая последовательность наблюдается при любой интенсивной физической деятельности. Фосфатная система важна для спринтеров, футболистов, прыгунов в высоту и длину, метателей диска, боксеров и теннисистов, то есть для всех взрывных, кратковременных, стремительных и энергичных видов физической деятельности.

Скорость ресинтеза КрФ после прекращения физической нагрузки также очень высока. Запасы высокоэнергетических фосфатов (АТФ и КрФ), израсходованных во время нагрузки, восполняются в течение нескольких минут после ее завершения. Уже через 30 с запасы АТФ и КрФ восстанавливаются на 70%, а через 3-5 мин восстанавливаются полностью.

Для тренировки фосфатной системы используются резкие, непродолжительные, мощные упражнения, чередующиеся с отрезками отдыха. Отрезки отдыха должны быть достаточно длительными, чтобы успевал происходить ресинтез АТФ и КрФ (график 1).

Уже через 8 недель спринтерских (скоростных) тренировок значительно увеличивается количество ферментов, которые отвечают за распад и ре-синтез АТФ. Если АТФ распадается быстрее, то, следовательно, и высвобождение энергии происходит быстрее. Таким образом, тренировка не только повышает запасы АТФ и КрФ, но и ускоряет процесс распада и восстановления АТФ. Такая адаптация организма (увеличение запасов АТФ/КрФ и повышение ферментативной активности) достигается путем сбалансированной тренировочной программы, включающей как аэробные, так и спринтерские тренировки.

Фосфатная система называется анаэробной, потому что в ресинтезе АТФ не учавствует кислород, и алактатной, поскольку не образуется молочная кислота.

Кислородная система

Кислородная, или аэробная, система является наиболее важной для спортсменов на выносливость, поскольку она может поддерживать физическую работу в течение длительного времени.

Кислородная система обеспечивает организм, и в частности мышечную деятельность, энергией посредством химического взаимодействия пищевых веществ (главным образом, углеводов и жиров) с кислородом. Пищевые вещества поступают в организм с пищей и откладываются в его хранилищах для дальнейшего использования по необходимости. Углеводы (сахар и крахмалы) откладываются в печени и мышцах в виде гликогена. Запасы гликогена могут сильно варьироваться, но в большинстве случаев их хватает как минимум на 60-90 мин работы субмаксимальной

интенсивности. В то же время запасы жиров в организме практически неисчерпаемы.

Углеводы являются более эффективным "топливом" по сравнению с жирами, так как при одинаковом потреблении энергии на их окисление требуется на 12% меньше кислорода. Поэтому в условиях нехватки кислорода при физических нагрузках энергообразование происходит в первую очередь за счет окисления углеводов. Поскольку запасы углеводов ограничены, ограничена и возможность их использования в видах спорта на выносливость. После исчерпания запасов углеводов к энергообеспечению работы подключаются жиры, запасы которых позволяют выполнять очень длительную работу.

Вклад жиров и углеводов в энергообеспечение нагрузки зависит от интенсивности упражнения и тренированности спортсмена. Чем выше интенсивность нагрузки, тем больше вклад углеводов в энергообразование. Но при одинаковой интенсивности аэробной нагрузки тренированный спортсмен будет использовать больше жиров и меньше углеводов по сравнению с неподготовленным человеком. Таким образом, тренированный человек будет более экономично расходовать энергию, так как запасы углеводов в организме небезграничны.

Производительность кислородной системы зависит от количества кислорода, которое способен усвоить организм человека. Чем больше потребление кислорода во время выполнения длительной работы, тем выше аэробные способности. Под воздействием тренировок аэробные способности человека могут вырасти на 50%.

Окисление жиров для энергии происходит по следующему принципу:

Жиры + кислород + АДФ → углекислый газ + АТФ + вода

Полученный в ходе реакции окисления углекислый газ выводится из организма легкими.

Распад углеводов (гликолиз) протекает по более сложной схеме, в которой задействуются две последовательные реакции:

Первая фаза:

глюкоза + АДФ → молочная кислота + АТФ

Вторая фаза:

молочная кислота + кислород +АДФ → углекислый газ +АТФ + вода

В. Н. Селуянов
ПНИЛ, РГАФК, Москва

Соревновательная деятельность в борьбе продолжается 5-9 мин. и завершается, как правило, предельным утомлением спортсмена. В циклических видах спорта такая деятельность может быть сопоставлена с соревновательной деятельностью бегуна на 1500-3000 м. Поскольку этот вид деятельности хорошо изучен в физиологии, то достаточно легко найти экспериментальные данные и физиологические механизмы, объясняющие результативность такой деятельности.

Например, возьмем данные B. Saltin et al. (Onset of exercise // Simposium. — Toulouse. — 1972. — P. 63-76.) В этой работе представлены данные об изменении АТФ, КрФ, гликогена, лактата в мышце (латеральной головке четырехглавой мышцы бедра), и лактата в крови при выполнении педалирования на велоэргометре с мощностью МПК.

Механизм энергообеспечения такой работы может быть описан следующим образом. В начале, для преодоления внешнего сопротивления, которое составляет около 40 % от МАМ, должны быть рекрутировано около 40 % МВ. Эти мышечные волокна являются окислительными. В них начинается трата молекул АТФ и ресинтез их за счет энергии молекул КрФ. Свободные Кр и неорганический фосфат активизируют деятельность гликолиза и окисления жиров одновременно. Через 10-15 с после начала упражнения запасы АТФ и КрФ в рекрутированных МВ значительно снижаются, поэтому мощность работы этих мышечных волокон падает в 2-3 раза. Это заставляет спортсмена рекрутировать новые МВ в количестве, необходимом для поддержания заданной мощности. Следовательно, следующие 10-15 с работа поддерживается за счет аэробных процессов в ранее рекрутированных МВ и энергии АТФ и КрФ в новых МВ. Затем, описанный механизм рекрутирования МВ, продолжает развиваться. Начинают подключаться к работе гликолитические МВ, которые после исчерпания запасов АТФ и КрФ начинают работать в анаэробном гликолизе с образованием лактата и ионов водорода. По данным B. Saltin et al. (1972) интенсивный рост концентрации лактата в мышце начинается после минуты работы. Продолжительность работы рекрутированных гликолитических МВ не превышает одной минуты, поскольку закисление МВ приводит к потере силы и мощности их функционирования. Поэтому работа с заданной мощностью будет продолжаться до тех пор, пока есть что рекрутировать. В момент исчерпания всех МВ заданная мощность уже не может больше поддерживаться. В этот момент мышцы предельно закисляются, потребление кислорода, ЧСС и легочная вентиляция достигаю также предельных величин. Испытуемый испытывает тяжелое физиологическое состояние и отказывается от продолжения работы. Если работа продолжалась 6 мин., то за это время потребление кислорода мышцами составит: V(О 2) АнП × 6 мин. = 4 л/мин х 6 мин. = 24 л/мин. Если мощность работы составила 400 Вт или 5,3 л О 2 /мин, то кислородный запрос упражнения составит 5,3 × 6 мин. = 32 л О 2 . Дефицит кислорода составил 8 л, из него 2-3 л приходится на АТФ и КрФ, а на анаэробный гликолиз 5-6 л.

Следовательно, основным механизмом энергообеспечения является аэробный (24/32 × 100 % = 75 %, алактатный 2/32 × 100 % = 6,3 %, анаэробный гликолиз 6/32 × 100 % = 18,7 %). Эта оценка в целом согласуется с данными многих авторов.

Заметим также, что с ростом потребления кислорода на уровне АнП, когда он приближется по своей величине к МПК, наблюдается увеличение продолжительности работы на уровне МПК, снижается степень закисления мышц и крови. В целом вклад в запрос кислорода аэробных процессов растет и может достигать 90 %.

Отсюда следует приоритет в развитии аэробного механизма энергообеспечения у спортсменов, выполняющих предельную мышечную работу в пределах 5-9 мин.

Единственным специалистом, результаты которого вошли в противоречие с общеустановленными представлениями является В. В. Шиян (1997). На основании исследования соревновательной деятельности различных видов борьбы он пришел к выводу о приоритете анаэробного механизма энергообеспечения.

На основе анализа биоэнергетических характеристик у спортсменов различных видов спорта им было установлено, что «у борцов существенно меньше показатели бионергетических функций, чем у представителей других видов спорта». Например, борцы имеют аэробную мощность (МПК) 58 мл/мин/кг, тогда как у бегунов на дистанцию 800 м и более длинные более 70 мл/мин/кг. Автор предположил, что отставание в развитии борцов связано с отставанием в теории и методике подготовки высококвалифицированных борцов по сравнению с другими видами спорта.

Эта аргументация поверхностная, а обнаруженное явление легко объяснить, если придерживаться концепции о периферическом лимитирующем факторе МПК. В этом случае потребление кислорода определяется массой митохондрий потребляющих кислород в активных мышцах ног, сердце и дыхательных мышц. При педалировании на велоэргометре основную работу выполняют только мышцы ног, поэтому при делении на массу тела, в которую входят у борцов существенно гипертрофированные и массивные мышцы спины, живота и рук, при равных абсолютных величинах МПК относительные величины МПК у борцов окажутся ниже при сравнении с представителями других видов спорта без существенной гипертрофии мышц пояса верхних конечностей.

Другим аргументом В. В. Шияна стали данные факторного анализа, из которых следовало, что вклад в общую дисперсию аэробных способностей борцов составил только 10 %, а основная дисперсия пришлась на анаэробные возможности — более 90 %. Следовательно, «подготовка борца высокой квалификации (особенно этап подготовки к соревнованиям), должна быть направлена на максимальное развитие преимущественно анаэробноых возможностей спортсменов». Такая аргументация не выдерживает следующей критики. При изучении однородных выборок спортсменов наиболее важные для достижения высоких спортивных результатов показатели у всех спортсменов должны быть примерно равными, следовательно, должны мало варьировать. Показатели, которые существенно варьируют, не имеют принципиального значения для данного вида спорта. Из этого следует, что именно анаэробные показатели не имеют принципиального значения при оценке уровня подготовленности борцов высокой квалификации.

Подтверждение нашей аргументации можно найти при анализе соревновательной деятельности борцов. Например, по данным В. В. Шияна (1997) активность победителей и надежность технических действий выше чем у побежденных на 30-50 %, а закисление у победителей либо меньше, либо статистически достоверно не различались (рН = 7,158, б = 0,077). Из этого следует, что более высокая активность борцов победителей определялась их более высокой аэробной подготовленностью.

Другим важным аргументом в пользу важности аэробной подготовленности борцов являются данные о тестировании и норме специальной выносливости борцов. В. В. Шиян (1997) использовал в своих исследованиях тест — педалирование на велоэргометре, три раза по одной минуте предельной нагрузки. После тестирования на 3-5 мин. бралась кровь из мочки уха, для определения рН. По данным тестирования по формуле определяли гликолитическую эффективность:

АнГЭ = ΣАi/(100 х ΔpH)

Где ΣАi сумма трех работ, выполненных в одноминутных предельных упражнениях, ΔpH — изменение степени закисления крови по данным анализа крови до и после тестирования.

Аналогичная формула использовалась для оценки специальной выносливости (коэффициент специальной выносливости):

КСВ = 100/(Σti х ΔpH),

Σti — сумма трех работ, выполненных в виде серий по 15 бросков чучела, с.

Анализ этих уравнений показывает, что при равном объеме выполненной работы уменьшение степени закисления крови ведет к росту специальной выносливости. Следовательно, показатели АнГЭ и КСВ характеризуют уровень аэробных возможностей спортсмена. К сожалению результаты, получаемые по этим формулам, получили некорректную интерпретацию. В. В. Шиян (1997) предположил, что одноминутная работа связана преимущественно с анаэробным механизмом энергообеспечения — анаэробным гликолизом, поэтому показатель КСВ должен характеризовать анаэробную гликолитическую мощность. При такой интерпретации ведущим фактором роста специальной выносливости становится анаэробный гликолиз.

Вывод

Соревновательная деятельность в борьбе самбо и дзюдо, продолжающаяся около 5 мин., требует энергообеспечения преимущественно за счет аэробного механизма, который необходим как для поддержания высокой интенсивности борьбы, так и для случаев проведения высокоинтенсивных двигательных действий связанных с рекрутированием гликолитических мышечных волокон, с образованием молочной кислоты, здесь аэробные возможности необходимы для устранения лактата и ионов водорода в митохондриях окислительных мышечных волокнах активных скелетных мышц, сердце и дыхательной мускулатуре в моменты снижения интенсивности двигательных действий в схватке.

Литература

В. В. Шиян Совершенствование специальной выносливости. — М.: ФОН, 1997. — 166 с.

B. Saltin et al. Onset of exercise //Simposium. — Toulouse. — 1972. — P. 63-76.

Энергодающим субстратом для обеспечения основной функции мышечного волокна - его сокращения - является аденозинтрифосфорная кислота - АТФ.

Энергообеспечение по способам реализации условно делят на анаэробное (алактатно-лактатное) и аэробное.

Эти процессы могут быть представлены следующим образом:

Анаэробная зона энергообеспечения:

АДФ + Фосфат + свободная энергия <=> АТФ

Фосфокреатин + АДФ <=> креатин + АТФ

2 АДФ <=> АМФ + АТФ

Гликоген (глюкоза) + Фосфат + АДФ <=> лактат + АТФ

Аэробная зона энергообеспечения:

Гликоген (глюкоза), жирные кислоты + Фосфат +О2С02 + Н2 0 + АТФ

Источники энергии -- это фосфагены, глюкоза, гликоген, свободные жирные кислоты, кислород.

Введение АТФ извне в достаточных дозах невозможно (обратное является широко распространенным заблуждением), следовательно, необходимо создать условия для образования повышенного количества эндогенного АТФ. На это направлена тренировка - сдвиг метаболических процессов в сторону образования АТФ, а также обеспечение ингредиентами.

Скорость накопления и расхода энергии значительно различаются в зависимости от функционального состояния спортсмена и вида спорта. Определенный вклад в процесс энергообеспечения, его коррекцию, возможен со стороны фармакологии.

В начале 70-х годов было доказано, что сокращение ишемизированного миокарда прекращается при исчерпании клеточных запасов фосфокреатина (ФК), несмотря на то, что в клетках остается неизрасходованным около 90% АТФ. Эти данные говорят о том, что АТФ неравномерно распределена внутри клетки. Доступным является не весь АТФ, содержащийся в мышечной клетке, а лишь его небольшая часть, локализованная в миофибриллах. Результаты исследований, выполненных в последующие годы, показали, что связь между внутриклеточными пулами АТФ осуществляют ФК и изоферменты креатинкиназы. В нормальных условиях молекула АТФ, выведенная из митохондрии, передает свою энергию креатину, который под воздействием митохондриального изофермента креатинкиназы трансформируется в ФК. Последний мигрирует к местам локальных креатинки-назных реакций (сарколемма, миофибриллы, саркоплазматический ретикулум), где другие изоферменты креатинкиназы обеспечивают ресинтез АТФ из ФК и АДФ.

Освобождающийся при этом креатин возвращается в митохондрию, а энергия АТФ используется по назначению, в том числе и для мышечного сокращения (см. схему). Скорость транспорта энергии внутри клетки по фосфокреатиновому пути значительно превосходит скорость диффузии АТФ в цитоплазме. Именно поэтому снижение содержания ФК в клетке и приводит к депрессии сократимости даже при сохранении значительного внутриклеточного запаса основного энергетического субстрата - АТФ.

По современным представлениям, физиологическая роль ФК состоит в эффективном обеспечении внутриклеточного транспорта энергии от мест ее производства к местам использования.

В аэробных условиях основными субстратами для синтеза АТФ являются свободные жирные кислоты, глюкоза и лактат, метаболизм которых в норме обеспечивает продукцию около 90% общего количества АТФ. В результате ряда последовательных каталитических реакций из субстратов образуется ацетил-коэнзим А. Внутри митохондрий в ходе цикла трикарбоновых кислот (цикла Кребса) происходит расщепление ацетил-коэнзима А до углекислоты и атомов водорода. Последние переносятся на цепь транспорта электронов (дыхательную цепь) и используются для восстановления молекулярного кислорода до воды. Энергия, образующаяся при переносе электронов по дыхательной цепи, в результате окислительного фосфорилирования трансформируется в энергию АТФ.

Уменьшение доставки кислорода к мышцам влечет за собой быстрый распад АТФ до АДФ и АМФ, затем распад АМФ до аденозина, ксантина и гипоксантина. Нуклеотиды через саркоплазматическую мембрану выходят в межклеточное пространство, что делает невозможным ресинтез АТФ.

В условиях гипоксии интенсифицируется анаэробный процесс синтеза АТФ, основным субстратом для которого служит гликоген. Однако в ходе анаэробного окисления образуется значительно меньше молекул АТФ, чем при аэробном окислении субстратов метаболизма. Энергия АТФ, синтезируемого в анаэробных условиях, оказывается недостаточной не только для обеспечения сократительной функции миокарда, но и для поддержания градиентов ионов в клетках. Уменьшение содержания АТФ сопровождается опережающим снижением содержания ФК.

Активизация анаэробного гликолиза влечет за собой накопление лактата и развитие ацидоза. Следствием дефицита макроэргических фосфатов и внутриклеточного ацидоза является нарушение АТФ-зависимых механизмов ионного транспорта, ответственных за удаление ионов кальция из клеток. Накопление ионов кальция в митоходриях приводит к разобщению окислительного фосфорилирования и усилению дефицита энергии. Увеличение концентрации ионов кальция в саркоплазме при недостатке АТФ способствует образованию прочных актиномиозиновых мостиков, что препятствует расслаблению миофибрилл.

Дефицит АТФ и избыток ионов кальция в сочетании с повышением продукции и увеличением содержания в мышце катехоламинов стимулирует «липидную триаду». Развитие «липидной триады» вызывает деструкцию липидного бислоя клеточных мембран. Все это приводит к контрактуре миофибрилл и их разрушению. Роль «ловушки ионов кальция» выполняют неорганический фосфат и другие анионы, накапливающиеся в клетке при гипоксии.

Фармобеспечение по зонам осуществляется следующим образом:

В анаэробной (алактатной ) зоне для обеспечения скоростной, максимально мощной, непродолжительной работы (несколько секунд), вводятся фосфагены, в частности неотон (см. главу «Макроэрги (фосфагены)»). фармакологический спорт допинг реабилитация

В анаэробной (лактатной ) зоне с накоплением молочной кислоты при работе субмаксимальной мощности организм также должен быть обеспечен фосфокреатином, максимально обеспечен возможностью полностью утилизировать кислород, терпеть кислородную задолженность (антигипок-санты), утилизировать «отходы» (см. главу «Коррекция лактатных возможностей организма»), а также иметь запасы гликогена и возможность пополнять в процессе работы углеводные запасы.

В аэробной (кислородной) зоне необходимо обеспечить: постоянное поступление углеводов в кровь, максимальное окисление жирных кислот (липотропные средства) и нейтрализацию образующихся при этом свободных радикалов (антиоксиданты), а также максимальное использование поступающего в организм кислорода (антигипоксанты).

Понравилась статья? Поделиться с друзьями: